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Announcements

e No new homework today.
e |Initialization topic deferred to next week.



Recap: Gradient descent algorithm

Step 1. Compute the derivatives of the loss with respect to the parameters:
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Step 2. Update the parameters according to the rule:

where the positive scalar a determines the magnitude of the change.



Gradient descent

IDEA: add noise, save
computation

® Stochastic gradient descent

® Compute gradient based on
only a subset of points — a
mini-batch

® \Work through dataset
sampling without replacement

® One pass though the data is
called an epoch



Recap: Properties of SGD

Can escape from local minima

Adds noise, but still sensible updates as based on part of data
Still uses all data equally

Less computationally expensive

Seems to find better solutions

e Doesn’t converge in traditional sense
e |earning rate schedule — decrease learning rate over time



Fitting models

Gradient descent algorithm
Stochastic gradient descent
Momentum

Adam



Fitting models

Gradient descent algorithm
Stochastic gradient descent
Momentum

Adam



Momentum

e \Weighted sum of this gradient and previous gradient
e Not only influenced by gradient
e Changes more slowly over time
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Still in batches.



Without and With Momentum
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Nesterov accelerated momentum

2259

® Momentum smooths out gradient of
current location
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mg < B-my+ (15 Z ¢t

716875

$1

Piy1 ¢ Py — -1y
® Alternative, smooth out gradient of where
we think we will be!

mg, 1 < f-my+ (1—0) Z agi[qbta_gbo‘ - my]
1€B;

Qi1 < Py — My \ =10
Still in batches.

Nesterov
momentum
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Frequency, ¢1

Nesterov Momentum
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Fitting models

Gradient descent algorithm
Stochastic gradient descent
Momentum

Adam



The challenge with fixed step sizes

a) Loss, L[¢] b) Loss, L[¢]

Moves quickly in
one dimension
but slowly in the

other. \é‘

~ Gradient descent

a=1.0
-1 T 1
. o 1
Too small and it will Too big and it will move
converge slowly, but quickly but might bounce

eventually get there. around minimum or away.



Solution Part 1: Normalized gradients

* Measure gradient m;,; and pointwise squared gradient v; 4

OL[¢p
Mgy < 8[qb ]
* Normalize: 2
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Vit1 € 5[05 ]
a is the learning rate
€ is a small constant to prevent div by 0
m;_ Square, sqrt and div are all pointwise

Py < Py — -

/Vit1 T €



Solution Part 1: Normalized gradients

* Measure gradient m;,; and pointwise squared gradient v; 4

OL(¢]
0¢

* Normalize: 2
oL
Vigl < a[j:t]

Mg <

a is the learning rate
€ is a small constant to prevent div by 0
m;_ Square, sqrt and div are all pointwise

Dividing by the positive root, so normalized to 1

and all that is left is the sign.




Solution Part 1: Normalized gradients

® Measure mean and pointwise squared gradient
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b1

Solution Part 1: Normalized gradients

Loss, L[¢]

e

~ Normalized gradients

a=0.05

T &

1

® algorithm moves downhill a fixed distance
a along each coordinate

® makes good progress in both directions

® but will not converge unless it happens to
land exactly at the minimum



Adaptive moment estimation (Adam)
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my 1 < B-my + (1 - f) a[jt]
® Compute mean and pointwise ,
squared gradients with momentum OL|¢,]
Vipr <y vit+ (1 —7)
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~ mig4q
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® Boost momentum near start of the 41 1 — pgt+l t=0
sequence since they are initialized to - Vitl —
Zero Vitl 7T s Vizo =0
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® Update the parameters



Adaptive moment estimation (Adam)

c) ; Loss, L[] d) Loss, L[¢]

b1

~ Normalized gradients | e
. o = 0.05 . a—005ﬁ 09,7 0.99
IR R i T %0 1




Other advantages of ADAM

Gradients can diminish or grow deep into networks. ADAM balances out

changes across depth of layers.
Adam is less sensitive to the initial learning rate so it doesn’t need complex

learning rate schedules.



Additional Hyperparameters

e Choice of learning algorithm: SGD, Momentum, Nesterov Momentum, ADAM
e Learning rate — can be fixed, on a schedule or loss dependent
e Momentum Parameters



Recap

e Gradient Descent

o Find a minimum for non-convex, complex loss functions
e Stochastic Gradient Descent

o Save compute by calculating gradients in batches, which adds some noise to the search
e (Nesterov) Momentum

o Add momentum to the gradient updates to smooth out abrupt gradient changes

e ADAM

o Correct for imbalance between gradient components while providing some momentum



Coming Up Next

e Gradients and initialization
o Backpropagation process - efficient calculation of gradients
o Learning rates - how aggressively do we use gradients
o Initialization strategies - avoid bad initializations crippling learning
e Measuring Performance
o Sounds easy - just plot losses?
o Some subtleties to avoid overfitting
o Some well-documented patterns where you think you are done prematurely
e Regularization
o Tactics to reduce the generalization gap between training and test performance.
o Often ad-hoc or heuristics to start, but slowly grounding these with theory.

e Following material will be more specific to application areas...



How do we efficiently compute the gradient over deep
networks?

Will do a deep dive on this network.

e Small enough to do by hand.
e Big enough to see gradient interactions.




Calculus Refresher
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Adding the Loss Computation




Explicit Edge Weights




Explicit Summations
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Explicit Multiplications




Board Time

Calculate Forward Values and Backward Gradients




Loss function

® Training dataset of / pairs of input/output examples:

{Xia Yi}r{:1

® |_oss function or cost function measures how bad

model is: L[¢, f [Xia gb], {Xi, Yi ,{:1:

or for short;

L [¢ “ Returns a scalar that is smaller

when model maps inputs to
outputs better



Gradient descent algorithm

Step 1. Compute the derivatives of the loss with respect to the parameters:
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Step 2. Update the parameters according to the rule:

where the positive scalar a determines the magnitude of the change.



So far, we looked at simple models with easy
to calculate gradients

For example, linear,
1-layer models.

Ll¢] = qu = Z (fli, @] — ws)”

= Z (¢o + 17 — %)2
i=1

Least squares loss for
linear regression

OL 0 <& Lo,
56~ 962"~ L 5
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Oty o
Ol _ 9% | _ 2(¢0 + ¢17i — yi) Partial derivative w.r.t.
0 22;(do + drx; —y;)|  €ach parameter



What about deep learning models?

Q, € R?x4 0, € R3x2 Q; € R2x3
Input, x Hidden Hidden Hidden Output, y
layer, hy layer. h, layer, hy ’
D; =3 Dy =4 Do =2 Dz =3 Do =2

hy — a[8, + Qox]

hy = a[3; + Q1h;

h; = a8, + Q2hy
fix, @] = B3 + Q3h3



We need to compute partial derivatives
w.r.t. every parameter!

1 1
Loss: sum of individual terms: L[qb] — Z l; = Z l[f[Xz, qﬁ], yz
=1 1=1

3 0l ¢,]
t
SGD Algorithm: qbt—l—l ¢t — a¢
1€B;
Millions and even billions of ¢ = {’80’ Qo, B1, Q41, B2, Q5, }
parameters:
We need the partial derivative with agl 8€Z

. . and
respect to every weight and bias we aIBk aﬂk

want to update for every sample in
the batch.




Network equation gets unwieldy even for
small models

® Model equation for 2 hidden layers of 3 units each:

y' = ¢y + dlaio + Y11alf10 + O11x] + Y10allag + O212] + 113a[030 + O317]
+ ¢hafhag + Po1a[f10 + O11x] + Yesalfag + O217] + Pozalbsg + O317]]
+ ¢salihso + 31al010 + O112] + ¥32a[f20 + O212] + 33a[030 + O312]]



Gradients

Backpropagation intuition

Toy model

Matrix calculus

Backpropagation matrix forward pass
Backpropagation matrix backward pass



Problem 1. Computing gradients

I 1
Loss: sum of individual terms: L[qﬁ] = Z V; = Z l[f[X“ ¢]7 yz
1=1 1=1

0l;[¢,]

SGD Algorithm: D1 ¢ P — Z 2 :
1€B:
rerameters ¢ = {80, o, B4, L1, By, 2, B3, 3}
ol; nd ol;

Need to compute gradients a/Bk- f}’ﬂk



Algorithm to compute gradient efficiently

e “Backpropagation algorithm”
e Rumelhart, Hinton, and Williams (1986)



BackProp intuition #1:

Training
output, y
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e

Training Hidden Hidden Hidden Output Loss. |
input, x layer, h; layer, hs layer, hs fix, @] ’
 The weight on the orange arrow multiplies activation (ReLU output) of previous layer
« We want to know how change in orange weight affects loss

 If we double activation in previous layer, weight will have twice the effect
 Conclusion:



BackProp intuition #2:

O 8 o A y
O ———o =0
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O g O

Training Hiclclen Hiclcden Hiclcden Qutput o
1 - J L(_')SS, [
input, x layeor, hy layer, hy layer, hy fx, o]

To calculate how a small change in a weight or bias feeding into hidden layer h;modifies

the loss, we need to know:

* how a change in layer h; changes the model output f

* how a change in the model output changes the loss [



BackProp intuition #2: the backward pass

: O
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O

Training, Hidcen Hiclden Hidcen Qutput

. Loss, [
input, x layor, hy layer, hy layer, hy fx, o] gt

To calculate how a small change in a weight or bias feeding into hidden layer h,modifies
the loss, we need to know:

* how a change in layer h, affects h3

* how h; changes the model output f We know this from the
* how a change in the model output f changes the loss [ previous step



BackProp intuition #2: the backward pass

oS
<:> »—”’fﬁﬁ <;>
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] ()
Training Hidden Hiclclen Hidden Qutput
input, x layer, hy layer, hy layer, ha f]x, ]

Loss, [

To calculate how a small change in a weight or bias feeding into hidden layer h; modifies
the loss, we need to know:

* how a change in layer h, affects h,

* how a change in layer h, affects h;

* how h; changes the model output f we know these from the
* how a change in the model output f changes the loss [ previous steps



Gradients

Backpropagation intuition

Toy model

Matrix calculus

Backpropagation matrix forward pass
Backpropagation matrix backward pass



Toy Network

1 input @
l
~ OO~ E—~O—~0O—®

3 layers, 1 hidden unit each

flx;,¢] = p3 + w3 - a [.32 + Wy '3[31 + wq - alfy + wq 'xi]]]

£ = (f x5, ] — y:)?



Gradients of toy function

flx;, ] = B3 + w3 - a [.32 + w, - a|fy + w; - a[By + W 'xi]]]
i = (flxi, ] — y:)*

Tells us how a small

change in §; or w; change
/ the loss ¢; for the ith
We want to calculate: example
ol; ol; ol ol; ol; ol ol ol

and

650 j &uo ’ 651 ’ 8&)1 ’ 862 ’ (’9w2 ’ 863 ’ 5?w3




Toy function

D

@—»@—»@—'@—»

Activations
fo=Bo+ wo-x f2=PB2+wy hy
hy = a[fo] hs = a[f;]
fi=B1tw hy f3=B3+ w3 h;3
h, = alfi] 2= ¥ — f3)°

T~

Intermediate values



Refresher: The Chain Rule

(== ®

For h(x) = g(f(x))
then h'(x) = g'(f(x)) f'(x), where h'(x) is the derivative of h(x).
Or can be written as

oh _ 9h dg
of dg of




Forward pass

flx;, ¢l =Pz + w3 - a [.32 +w; - a[By + w; - a[By + wo 'xi]]]

£ = (f[xi, @] — ¥:)?

1. Write this as a series of
intermediate calculations

fo=PBo+ wo - x; f2=PB2+ w3 h;
2. Compute these hi = a[fo] h; = a[f;]
intermediate quantities f1 — '31 + wq - h1 f3 — '33 + W3 .h3

h, = a[fi] t; = (y; —f3)2



Backward pass

flx;, ] = ps + w3 - a [.32 + w; - 3[31 + w; - a[By + wg 'xi]]]

£ = (flx;, @] — ¥:1)*

1. Compute the derivatives

of the /oss with respect to oY, oY, % ol; oY, % nd ol
these intermediate a]ﬂg ) ahB ’ an ? Ohs ? afl ? Ohq ? afo
guantities, but in reverse —

order.

(——————



Backward pass

flxi, §] = B3 + w3 - a|By + w5 - a[By + wy - alBo + wo - x]]|

£ = (f[x, @] — yi)?

1. Compute the

derivatives of the loss
with respect to these ot Ot ot % 0t Ot and %
intermediate quantities, 3f3 ’ 8h3 ’ 3f2 ’ (9h2 ’ 8]01 ’ ahl ’ afo

but in reverse order.

= E—E—E—E—E—E——®



Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

* The first of these
derivatives is trivial

N ——

hy = a[fo]
fi=p1+wy-hy
h, = a[f1]

0l

f2=B2+wy-hy
hz = a[f,]

f3=B3+ w3 h3
2= (fs — y)°

(1)
\J)



Backward pass ==~ —()—(®)
1. Compute the fo=Botwo-x f2=B2+ wy - hy
derivatives of the loss h, = a[fy] h; = a[f;]
with respect to these _ ) _ .
intermediate quantities, fl o '81 T Wy hl f3 - '83 tws h3
but in reverse order. h, = a[fl] ei = O’i - f3)2
* The second of these

derivatives is computed 86’& L 8f3 ae?j

via the chain rule

Ohs  Ohs Ofs

:

How does a small
change in h3 change ¢;?



Backward pass () —(—()—(®)
1. Compute the fo=Bo+wo-x f2=P2+ wz-hy
derivatives of the loss hi = a[f,] h; = a[f;]

with respect to these

intermediate quantities, fl = ﬁl + wq - hl f3 = ﬁB + w3 - h3

but in reverse order. h, = a[fl] £; = (yi — f3)2

* The second derivative
is computed via the 86’& L af3 agl

chain rule Ohs N Ohs 6f3\

How does a small

change in f5 change ¢;?
How does a small

change in h; change ¢;?

How does a small
change in h; change f3?



Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

* The second of these
derivatives is computed
via the chain rule

fo=PBotwo-x f2=B2+ w3 hy
hy = a[fy] hs = a[f;]
fi=B1+wi-hy f3=B3+ w3 h3
h, = a[fi] i = (i —f3)2

ot;  Ofs 0L

Ohs  Ohs Ofs

Already computed!



Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

* The remaining
derivatives also
calculated by further
use of chain rule

fo=Bo+wp-x

hy = a[fo]
fi=p1+wy-hy
h, = a[f1]

Afs Oy \Ohg [y

hs = a[f;]
f3 =P3+ w3 h;
;=i — f3)°



Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

* The remaining
derivatives also
calculated by further
use of chain rule

NN T N N NS TR AN
fo=Bo+wp-x f2 =B+ wy h,
hy = a[fo] h; = a[f;]
fi=Pp1t+wi-hy f3 =PB3s+ w3 h3
h, = a[fi] £ = (y; —f3)2

Already computed!



Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

* The remaining
derivatives also
calculated by further
use of chain rule

fo=Bo+wp-x

hy = a[fo]
fi=p1twi-hy
h, = a[fi]
ol;  Ohs (afS ('MZ')
Ofs  Ofs \Ohs Ofs
oL,  Ofy (Ohs Ofs 0L

0}12 B 0h2

(

afg 0h3 6f;>,

)

hs = a[f;]
f3 =P3+ w3 h;
;= i — f3)?



Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

* The remaining
derivatives also
calculated by further
use of chain rule

@) —)— ) —)— () —(E)
NETNGY T R N NS R AN
fo=PBo+wo-x f2=PB2+ w; - hy
hy = a[fo] h; = a[f3]
fi=p1+w;-hy f3 = B3+ w3 h3
— — 2
h, = a[fi] ;= i—f3)
ol; _ Ohs (8]"3 8&»)
Ofy  Ofy \Oh3 0fs3
¢, df 2 (Ohs Ofz O¢;
8]12 8h2 8f2 8h3 8f3
ol; <8f2 Ohs 0f3 8&)
df1 afl Ohgy Ofy Ohs Ofs
8& (’)fl (3}),2 afz 8’13 8f3 821 )
ohy 8h1 Of1 Ohy Ofy Ohs O f3
Ofo Ofo \Oh1 Of1 Ohy Ofs Ohs Of3



Backward pass E—@—E)—@)

1. Compute the
derivatives of the loss
with respect to these

intermediate quantities, Ol = 2(f3 —y;)
but in reverse order. df3
ot;  0fz ot
Ohs  Ohs Ofs
* The remaining ot = Ohs <8f3 8&)
derivatives also 0r2 0f2 \Ohs 01
o;  0f

calculated by further

Ohg dfs3 OL; )
use of chain rule

8]12 8h2 8f2 8h3 8f3

or; <8f2 Ohs 0fs 8&)

Of afl Oha Of2 Ohs Ofs

8& (’)fl ahg afz 8’13 8f3 821
Ohy  Ohy \ Of1 Ohy Ofs Ohs3 8f3>
8& dhl

Of1 Ohy Ofy Ohs Ofs 8&)

Ofo  Ofo \Ohy Of1 Oha Ofs Ohz Ofs



Backward pass O 2(f— )

Of3
ol;  Ofs 0t
Ohs  Ohs Ofs
1. Compute the ot — Ohs <8f3 8&)
derivatives of the loss 0f»  Of2 \Ohs 0f3
with respect to these oy Ofy (Ohg Of3 04
intermediate quantities, Oho é)hz (c“ifz Ohs 8f3>
but in reverse order. ol O fy Ohs Ofs O
é)fl (dhz afz ahg 0f3>
8& 8f1 8h2 afz ahg 8f3 8&
e The remaining Oh, Ol <6f1 Ohs 0 fo Ohg Ofg)
derivatives also ol Oy (

df1 Ohy Ofy Ohz Of3 O;
calculated by further use dfs  Ofo \Ohy Of, Oha Ofs Ohz Ofs

of chain rule

Ohy 9f1 Ohy Of2 Ohg Ofs
® Pretetetetete—o
0 fo




We extend this to get the parameters w’'s and B’s



Backward pass

2. Find how the loss fo=PBotwo-x fa=B2+wz-hy
changes as a function of h1 = a[fo] h3 = a[fz]
the parameters [ and o.

' P fi=Pf1tw-hy f3 = B3+ w3 h3

— 2
h, = a[fi] ;= i—f3)
e Another application !
of the chain rule agz . afk aez
Owr  Owy, Ofk

/ How does a small

change in f; change [;?
How does a small

change in o, change [;?

How does a small
change in o, change f;?



Backward pass

2. Find how the loss fo=PBo +wo-x fa=F2+wz h
changes as a function of hy = a[fo] h; = a[f;]
the parameters [3 and o.
€p p f1=ﬁ1+(1)1'h1 f3=ﬁ3+w3°h3
— 2
h, = a[f1] ti=0i—f3)
e Another application !
of the chain rule agz . afk aez
&Uk ka afk
/ Already calculated in
How does a small 0fk _ hy part 1.

change in o, change [;? dwy



Backward pass

2. Find how the loss
changes as a function of
the parameters § and .

* Another application
of the chain rule

* Similarly for
parameters

hy = a[fo]
fi=p1tw hy
h, = a[fq]
ol dfi 0L
&Uk N ka 0fk

f2 =B+ wy h,

hs = a[f;]
f3 =P3+ w3 h;
;= i — f3)?



Backward pass

2. Find how the loss fo=Bo+wp-x f2 = P2+ wy-h,

changes as a function of hy = a[fo] h3 = a[fz]
the parameters § and .




Gradients

Backpropagation intuition

Toy model

Matrix calculus

Backpropagation matrix forward pass
Backpropagation matrix backward pass



Matrix calculus

Scalar function f[:] of a vector a

- of
ai ((i’)afl
a—= | % _ | 99
as Oa of
a4 das
of

| Oag _

The derivative is a vector of shape a



Matrix calculus

Scalar function f[:] of a matrix a

aii

asi

a2
a9
as2

of
oA

The derivative is a matrix of shape a

of  of  of
8@11 8&12 8013
of of of
Oazi Oaszz Oaszs
of of of
Oaz1  Oaz2  Oass
of of of
daa1 Oay> Oays




Matrix calculus Columns are each

element function

Vector function f[:] of a vector a
Rows are each

variable element

| "O0f1 Of2  Of3T
_f ] al 80,1 aal 8a1 7

1 as| Hf ofi  Of: Ofs
f — f2 a — T Oao das das
as| Ha |2 9f2 Ofs
f3 3&3 80,3 8a3
- - aq ofir Ofs 0Ofa

B N _(’)a4 8a4 8a4_

Vector of scalar
valued functions



Comparing vector and matrix

Scalar
derivatives:

0fs 0
f3 = B3 +wshs —f

ahg — 8—h‘g(53 ‘|‘w3h3) — W3



Comparing vector and matrix

Scalar
derivatives: 8]5 a
3
3 = i—l—w:h; —_— = —I—wh = W
fs = B3 + wshs Ohe ~ Ohe (B3 + wshs) = ws
Matrix
derivatives: 0f3 6,

f3 = 5,3 + {23h; —

. T
ah3 ah? (163 T Qghg) - ﬂ3



Comparing vector and matrix

Scalar

derivatives: afS a ﬂ _I_ h 1
3 = B3 + wsh: — 3 T W33 =
f% B% 3103 663 awg

Matrix

derivatives: 6f3 8

f; = 3, + Qsh; 28, 8—/33(63 + Q3hz) =1



Gradients

Backpropagation intuition

Toy model

Matrix calculus

Backpropagation matrix forward pass
Backpropagation matrix backward pass



The forward pass

Training
output, y %U)

Training Hidden Hidden Hidden Output Loss. |
input, x layer, hy layer, ho layer, hs f]x, @] ’
1. Write this as a series
of fo = By + Qox;
mterme‘dlate hy = a[fo]
calculations
fi=08,+1h
h2 = a[fl]
fo = B, + Q2shy
h3 — a[fg]
fs = B85 + Qs3hs

0; = 1[fs, y;]



The forward pass

4
\
y

>

Q. Q Training
output, y

/;Oj\ ,;j;‘.::@
\X\ / g — \O/ ;
Training Hidden Hidden Hidden Output Loss. |
input, x layer, hy layer, ho layer, hs f]x, @] ’

1. Write this as a series

of f() = ,60 -+ Q()X@'
mterme‘dlate h; = alfy]
calculations

fi=08,+1h
2. Compute these hy = alfy]
intermediate quantities f, = 3, + Q2hy

hg = a[fg]

fs = B35 + Q3h;y

0; = 1[fs, y;]



The backward pass

1. Write this as a series
of intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities
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Gradients

Backpropagation intuition

Toy model

Matrix calculus

Backpropagation matrix forward pass
Backpropagation matrix backward pass



The backward pass

1. Write this as a series
of

intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

fo = By + Qox;
h; = a[fy]
f; = /61 + Q1hy
hy = alfy]
fo = By + Q2hy
h; = alfs]
f3 = B3 + Q3hg

0; = 1[fs, y;]

Hidden
layer, h;
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Yikes!

® But:
0fs 0

Ohs  Ohj (

B3 + Q3hs) = ﬂ§

® Quite similar to:

ofs 0

8}13 — ah% (63 +w3h3) — W3




The backward pass

Training Hidden

input, x layer, h;
1. Write this as a series ov;
of intermediate fo = By + Qox; of
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2. Compute these fy =B + by of,
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 Ohg 05|00,
~ Of, 0hy Of

 Ohy Of, (Ohy Ofy 0L,
~ ofy ohy (af2 ohs afg)
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The backward pass

1. Write this as a series
of intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

fo = By + Qox;
h; = a[fy]
f; = /61 + Q1hy
hy = alfy]
fo = By + Q2hy
h; = alfs]
f3 = B3 + Q3hg

0; = 1[fs, y;]

Hidden
layer, h;
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Derivative of ReLU
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Derivative of ReLU

2.0

Qutput
o
o

vvvvvvvvv

[[z >0

“Indicator function”



Derivative of RELU

1. Consider:

where:

a = ReLU|b]

2. We could equivalently write:

aj
an
as

ReLU[b;] o
ReLU b2 b -
_RGLU bg |

3. Taking the derivative

oai Odasg Jdas
0bq 0bq 0bq
oay das das
Obs Obso Obo
8&1 aaz 8a3
Obs Obs Obs

4. We can equivalently pointwise multiply by

diagonal

Ilb > 0]¢




The backward pass

1. Write this as a series
of

intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

fo = By + Qox;
h; = a[fy]
f; = /61 + Q1hy
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The backward pass

1. Write this as a series
of

intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities
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The backward pass

1. Write this as a series
of

intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

Training
input, x

fo = By + Qox;

h; = a[fy]

f; = /61 + Q1hy

hy = alfy]
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Gradients

Backpropagation intuition

Toy model

Jupyter notebook example of backprop and autograd
Matrix calculus

Backpropagation matrix forward pass
Backpropagation matrix backward pass

Matrix backprop summary



Pros and cons

e Extremely efficient
o  Only need matrix multiplication and thresholding for ReLU functions

e Memory hungry — must store all the intermediate quantities
e Sequential

o can process multiple batches in parallel
o but things get harder if the whole model doesn’t fit on one machine.



Coming Up Next

e Gradients and initialization
o Backpropagation process - efficient calculation of gradients
o Learning rates - how aggressively do we use gradients
o Initialization strategies - avoid bad initializations crippling learning
e Measuring Performance
o Sounds easy - just plot losses?
o Some subtleties to avoid overfitting
o Some well-documented patterns where you think you are done prematurely
e Regularization
o Tactics to reduce the generalization gap between training and test performance.
o Often ad-hoc or heuristics to start, but slowly grounding these with theory.

e Following material will be more specific to application areas...



Feedback?




