
Deep Learning for Data Science
DS 542

Lecture 06
Gradients

Slides originally by Thomas Gardos.
Images from Understanding Deep Learning unless otherwise cited.

https://udlbook.com

Announcements

● No new homework today.
● Initialization topic deferred to next week.

Recap: Gradient descent algorithm

IDEA: add noise, save
computation

● Stochastic gradient descent

● Compute gradient based on
only a subset of points – a
mini-batch

● Work through dataset
sampling without replacement

● One pass though the data is
called an epoch

Recap: Properties of SGD
● Can escape from local minima
● Adds noise, but still sensible updates as based on part of data
● Still uses all data equally
● Less computationally expensive
● Seems to find better solutions

● Doesn’t converge in traditional sense
● Learning rate schedule – decrease learning rate over time

Fitting models
● Gradient descent algorithm
● Stochastic gradient descent
● Momentum
● Adam

Fitting models
● Gradient descent algorithm
● Stochastic gradient descent
● Momentum
● Adam

● Weighted sum of this gradient and previous gradient
● Not only influenced by gradient
● Changes more slowly over time

Momentum

Still in batches.

Without and With Momentum

Without Momentum, Loss =
1.31

With Momentum, Loss =
0.96

Nesterov accelerated momentum

● Momentum smooths out gradient of
current location

● Alternative, smooth out gradient of where
we think we will be!

Still in batches.

Nesterov Momentum

Without Momentum, Loss =
1.31

With Momentum, Loss =
0.96

Nesterov Momentum, Loss =
0.80

Fitting models
● Gradient descent algorithm
● Stochastic gradient descent
● Momentum
● Adam

The challenge with fixed step sizes

Too small and it will
converge slowly, but
eventually get there.

Too big and it will move
quickly but might bounce
around minimum or away.

Moves quickly in
one dimension
but slowly in the
other.

Solution Part 1: Normalized gradients

Solution Part 1: Normalized gradients

Dividing by the positive root, so normalized to 1
and all that is left is the sign.

Solution Part 1: Normalized gradients

● Measure mean and pointwise squared gradient

● Normalize:

Solution Part 1: Normalized gradients

● algorithm moves downhill a fixed distance
α along each coordinate

● makes good progress in both directions

● but will not converge unless it happens to
land exactly at the minimum

Adaptive moment estimation (Adam)

● Compute mean and pointwise
squared gradients with momentum

● Boost momentum near start of the
sequence since they are initialized to
zero

● Update the parameters

Adaptive moment estimation (Adam)

Other advantages of ADAM
● Gradients can diminish or grow deep into networks. ADAM balances out

changes across depth of layers.
● Adam is less sensitive to the initial learning rate so it doesn’t need complex

learning rate schedules.

Additional Hyperparameters
● Choice of learning algorithm: SGD, Momentum, Nesterov Momentum, ADAM
● Learning rate – can be fixed, on a schedule or loss dependent
● Momentum Parameters

Recap
● Gradient Descent

○ Find a minimum for non-convex, complex loss functions
● Stochastic Gradient Descent

○ Save compute by calculating gradients in batches, which adds some noise to the search
● (Nesterov) Momentum

○ Add momentum to the gradient updates to smooth out abrupt gradient changes
● ADAM

○ Correct for imbalance between gradient components while providing some momentum

Coming Up Next

● Gradients and initialization
○ Backpropagation process - efficient calculation of gradients
○ Learning rates - how aggressively do we use gradients
○ Initialization strategies - avoid bad initializations crippling learning

● Measuring Performance
○ Sounds easy - just plot losses?
○ Some subtleties to avoid overfitting
○ Some well-documented patterns where you think you are done prematurely

● Regularization
○ Tactics to reduce the generalization gap between training and test performance.
○ Often ad-hoc or heuristics to start, but slowly grounding these with theory.

● Following material will be more specific to application areas…

How do we efficiently compute the gradient over deep
networks?

Will do a deep dive on this network.

● Small enough to do by hand.
● Big enough to see gradient interactions.

Calculus Refresher

Adding the Loss Computation

Explicit Edge Weights

Explicit Summations

Explicit Multiplications

Board Time

Calculate Forward Values and Backward Gradients

Loss function
● Training dataset of I pairs of input/output examples:

● Loss function or cost function measures how bad
model is:

 or for short:

Returns a scalar that is smaller
when model maps inputs to
outputs better

Gradient descent algorithm

So far, we looked at simple models with easy
to calculate gradients

For example, linear,
1-layer models. Least squares loss for

linear regression

Partial derivative w.r.t.
each parameter

What about deep learning models?

We need to compute partial derivatives
w.r.t. every parameter!

Loss: sum of individual terms:

SGD Algorithm:

Millions and even billions of
parameters:

We need the partial derivative with
respect to every weight and bias we
want to update for every sample in
the batch.

Network equation gets unwieldy even for
small models
● Model equation for 2 hidden layers of 3 units each:

Gradients
● Backpropagation intuition
● Toy model
● Matrix calculus
● Backpropagation matrix forward pass
● Backpropagation matrix backward pass

Problem 1: Computing gradients

Loss: sum of individual terms:

SGD Algorithm:

Parameters:

Need to compute gradients

Algorithm to compute gradient efficiently

● “Backpropagation algorithm”
● Rumelhart, Hinton, and Williams (1986)

BackProp intuition #1: the forward pass

• The weight on the orange arrow multiplies activation (ReLU output) of previous layer
• We want to know how change in orange weight affects loss
• If we double activation in previous layer, weight will have twice the effect
• Conclusion: we need to know the activations at each layer.

Remember! There’s an implied

weight on every arrow in the diagram

BackProp intuition #2: the backward pass

BackProp intuition #2: the backward pass

We know this from the
previous step

BackProp intuition #2: the backward pass

We know these from the
previous steps

Gradients
● Backpropagation intuition
● Toy model
● Matrix calculus
● Backpropagation matrix forward pass
● Backpropagation matrix backward pass

Toy Network

1 input

3 layers, 1 hidden unit each

Gradients of toy function

We want to calculate:

Toy function

Activations

Intermediate values

Refresher: The Chain Rule

Forward pass

1. Write this as a series of
intermediate calculations

2. Compute these
intermediate quantities

Backward pass

1. Compute the derivatives
of the loss with respect to
these intermediate
quantities, but in reverse
order.

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The first of these
derivatives is trivial

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The second of these
derivatives is computed
via the chain rule

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The second derivative
is computed via the
chain rule

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The second of these
derivatives is computed
via the chain rule

Already computed!

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The remaining
derivatives also
calculated by further
use of chain rule

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The remaining
derivatives also
calculated by further
use of chain rule

Already computed!

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The remaining
derivatives also
calculated by further
use of chain rule

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The remaining
derivatives also
calculated by further
use of chain rule

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The remaining
derivatives also
calculated by further
use of chain rule

Backward pass

1. Compute the
derivatives of the loss
with respect to these
intermediate quantities,
but in reverse order.

• The remaining
derivatives also
calculated by further use
of chain rule

We extend this to get the parameters ω’s and β’s

Backward pass

2. Find how the loss
changes as a function of
the parameters β and ω.

• Another application
of the chain rule

Backward pass

2. Find how the loss
changes as a function of
the parameters β and ω.

• Another application
of the chain rule

Already calculated in
part 1.

Backward pass

2. Find how the loss
changes as a function of
the parameters β and ω.

• Another application
of the chain rule

• Similarly for β
parameters

1

Backward pass

2. Find how the loss
changes as a function of
the parameters β and ω.

Gradients
● Backpropagation intuition
● Toy model
● Matrix calculus
● Backpropagation matrix forward pass
● Backpropagation matrix backward pass

Matrix calculus

Matrix calculus

Matrix calculus

Vector of scalar
valued functions

Columns are each
element function

Rows are each
variable element

Comparing vector and matrix

Scalar
derivatives:

Comparing vector and matrix

Scalar
derivatives:

Matrix
derivatives:

Comparing vector and matrix

Scalar
derivatives:

Matrix
derivatives:

Gradients
● Backpropagation intuition
● Toy model
● Matrix calculus
● Backpropagation matrix forward pass
● Backpropagation matrix backward pass

The forward pass

1. Write this as a series
of
intermediate
calculations

The forward pass

1. Write this as a series
of
intermediate
calculations

2. Compute these
intermediate quantities

The backward pass

1. Write this as a series
of intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

Gradients
● Backpropagation intuition
● Toy model
● Matrix calculus
● Backpropagation matrix forward pass
● Backpropagation matrix backward pass

The backward pass

1. Write this as a series
of
intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

Yikes!
● But:

● Quite similar to:

The backward pass

1. Write this as a series
of intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

The backward pass

1. Write this as a series
of intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

Derivative of ReLU

Derivative of ReLU

“Indicator function”

Derivative of RELU

1. Consider:
where:

2. We could equivalently write: 3. Taking the derivative

4. We can equivalently pointwise multiply by
diagonal

The backward pass

1. Write this as a series
of
intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

The backward pass

1. Write this as a series
of
intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

4. Take derivatives w.r.t.
parameters

The backward pass

1. Write this as a series
of
intermediate
calculations

2. Compute these
intermediate quantities

3. Take derivatives of
output with respect to
intermediate quantities

4. Take derivatives w.r.t.
parameters

Gradients
● Backpropagation intuition
● Toy model
● Jupyter notebook example of backprop and autograd
● Matrix calculus
● Backpropagation matrix forward pass
● Backpropagation matrix backward pass
● Matrix backprop summary

Pros and cons
● Extremely efficient

○ Only need matrix multiplication and thresholding for ReLU functions
● Memory hungry – must store all the intermediate quantities
● Sequential

○ can process multiple batches in parallel
○ but things get harder if the whole model doesn’t fit on one machine.

Coming Up Next

● Gradients and initialization
○ Backpropagation process - efficient calculation of gradients
○ Learning rates - how aggressively do we use gradients
○ Initialization strategies - avoid bad initializations crippling learning

● Measuring Performance
○ Sounds easy - just plot losses?
○ Some subtleties to avoid overfitting
○ Some well-documented patterns where you think you are done prematurely

● Regularization
○ Tactics to reduce the generalization gap between training and test performance.
○ Often ad-hoc or heuristics to start, but slowly grounding these with theory.

● Following material will be more specific to application areas…

Feedback?

