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Announcements

● No new homework today.
● Initialization topic deferred to next week.



Recap: Gradient descent algorithm

 



IDEA:  add noise, save 
computation

● Stochastic gradient descent

● Compute gradient based on 
only a subset of points – a 
mini-batch

● Work through dataset 
sampling without replacement

● One pass though the data is 
called an epoch 



Recap: Properties of SGD
● Can escape from local minima
● Adds noise, but still sensible updates as based on part of data
● Still uses all data equally
● Less computationally expensive
● Seems to find better solutions

● Doesn’t converge in traditional sense
● Learning rate schedule – decrease learning rate over time



Fitting models
● Gradient descent algorithm
● Stochastic gradient descent
● Momentum
● Adam



Fitting models
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● Weighted sum of this gradient and previous gradient
● Not only influenced by gradient
● Changes more slowly over time

Momentum

Still in batches.



Without and With Momentum

Without Momentum, Loss = 
1.31

With Momentum, Loss = 
0.96





Nesterov accelerated momentum

● Momentum smooths out gradient of 
current location

● Alternative, smooth out gradient of where 
we think we will be!

Still in batches.



Nesterov Momentum

Without Momentum, Loss = 
1.31

With Momentum, Loss = 
0.96

Nesterov Momentum, Loss = 
0.80



Fitting models
● Gradient descent algorithm
● Stochastic gradient descent
● Momentum
● Adam



The challenge with fixed step sizes

Too small and it will 
converge slowly, but 
eventually get there.

Too big and it will move 
quickly but might bounce 
around minimum or away.

Moves quickly in 
one dimension 
but slowly in the 
other.



Solution Part 1: Normalized gradients

 

 



Solution Part 1: Normalized gradients

 

 

Dividing by the positive root, so normalized to 1 
and all that is left is the sign.



Solution Part 1: Normalized gradients

● Measure mean and pointwise squared gradient

● Normalize:



Solution Part 1: Normalized gradients

● algorithm moves downhill a fixed distance 
α along each coordinate

● makes good progress in both directions 

● but will not converge unless it happens to 
land exactly at the minimum



Adaptive moment estimation (Adam)

● Compute mean and pointwise 
squared gradients with momentum

● Boost momentum near start of the 
sequence since they are initialized to 
zero

● Update the parameters

 

 



Adaptive moment estimation (Adam)



Other advantages of ADAM
● Gradients can diminish or grow deep into networks. ADAM balances out 

changes across depth of layers.
● Adam is less sensitive to the initial learning rate so it doesn’t need complex 

learning rate schedules.



Additional Hyperparameters
● Choice of learning algorithm: SGD, Momentum, Nesterov Momentum, ADAM
● Learning rate – can be fixed, on a schedule or loss dependent
● Momentum Parameters



Recap
● Gradient Descent

○ Find a minimum for non-convex, complex loss functions
● Stochastic Gradient Descent

○ Save compute by calculating gradients in batches, which adds some noise to the search
● (Nesterov) Momentum

○ Add momentum to the gradient updates to smooth out abrupt gradient changes
● ADAM

○ Correct for imbalance between gradient components while providing some momentum



Coming Up Next

● Gradients and initialization
○ Backpropagation process - efficient calculation of gradients
○ Learning rates - how aggressively do we use gradients
○ Initialization strategies - avoid bad initializations crippling learning

● Measuring Performance
○ Sounds easy - just plot losses?
○ Some subtleties to avoid overfitting
○ Some well-documented patterns where you think you are done prematurely

● Regularization
○ Tactics to reduce the generalization gap between training and test performance.
○ Often ad-hoc or heuristics to start, but slowly grounding these with theory.

● Following material will be more specific to application areas…



How do we efficiently compute the gradient over deep 
networks?

Will do a deep dive on this network.

● Small enough to do by hand.
● Big enough to see gradient interactions.



Calculus Refresher



Adding the Loss Computation



Explicit Edge Weights



Explicit Summations



Explicit Multiplications



Board Time

Calculate Forward Values and Backward Gradients



Loss function
● Training dataset of I pairs of input/output examples:

● Loss function or cost function measures how bad 
model is:

   or for short:

Returns a scalar that is smaller 
when model maps inputs to 
outputs better



Gradient descent algorithm

 



So far, we looked at simple models with easy 
to calculate gradients

For example, linear, 
1-layer models. Least squares loss for 

linear regression

Partial derivative w.r.t. 
each parameter



What about deep learning models?



We need to compute partial derivatives 
w.r.t. every parameter!

Loss: sum of individual terms:

SGD Algorithm:

Millions and even billions of 
parameters:

We need the partial derivative with 
respect to every weight and bias we 
want to update for every sample in 
the batch.

 



Network equation gets unwieldy even for 
small models
● Model equation for 2 hidden layers of 3 units each:



Gradients
● Backpropagation intuition
● Toy model
● Matrix calculus
● Backpropagation matrix forward pass
● Backpropagation matrix backward pass



Problem 1:  Computing gradients

Loss: sum of individual terms:

SGD Algorithm:

Parameters:

Need to compute gradients



Algorithm to compute gradient efficiently

● “Backpropagation algorithm”
● Rumelhart, Hinton, and Williams (1986)



BackProp intuition #1:  the forward pass

• The weight on the orange arrow multiplies activation (ReLU output) of previous layer  
• We want to know how change in orange weight affects loss
• If we double activation in previous layer, weight will have twice the effect
• Conclusion: we need to know the activations at each layer.

Remember! There’s an implied 

weight on every arrow in the diagram



BackProp intuition #2: the backward pass

 



BackProp intuition #2: the backward pass

 

We know this from the 
previous step



BackProp intuition #2: the backward pass

 

We know these from the 
previous steps



Gradients
● Backpropagation intuition
● Toy model
● Matrix calculus
● Backpropagation matrix forward pass
● Backpropagation matrix backward pass



Toy Network

 

 

      

 
1 input

3 layers, 1 hidden unit each



Gradients of toy function

We want to calculate:

 

 

 



Toy function

 

      

 

   

Activations
 

Intermediate values



Refresher: The Chain Rule

 
    



Forward pass

1. Write this as a series of 
intermediate calculations

2. Compute these 
intermediate quantities

 

 

  



Backward pass

1. Compute the derivatives 
of the loss with respect to 
these intermediate 
quantities, but in reverse 
order.

 

 



Backward pass

1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

 

 



Backward pass

1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The first of these 
derivatives is trivial

  



Backward pass

1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The second of these 
derivatives is computed 
via the chain rule

 

  



Backward pass

1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The second derivative 
is computed via the 
chain rule

 

  

  



Backward pass

1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The second of these 
derivatives is computed 
via the chain rule

Already computed!
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• The remaining 
derivatives also 
calculated by further 
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Backward pass

1. Compute the 
derivatives of the loss 
with respect to these 
intermediate quantities, 
but in reverse order.

• The remaining 
derivatives also 
calculated by further use 
of chain rule



We extend this to get the parameters ω’s and β’s 



Backward pass

2. Find how the loss 
changes as a function of 
the parameters β and ω.

• Another application 
of the chain rule

 

  

  



Backward pass

2. Find how the loss 
changes as a function of 
the parameters β and ω.

• Another application 
of the chain rule

Already calculated in 
part 1.  

  



Backward pass

2. Find how the loss 
changes as a function of 
the parameters β and ω.

• Another application 
of the chain rule

• Similarly for β 
parameters

  

1



Backward pass

2. Find how the loss 
changes as a function of 
the parameters β and ω.

  



Gradients
● Backpropagation intuition
● Toy model
● Matrix calculus
● Backpropagation matrix forward pass
● Backpropagation matrix backward pass



Matrix calculus

 

 



Matrix calculus

 

 



Matrix calculus

 

Vector of scalar 
valued functions

Columns are each 
element function

Rows are each 
variable element



Comparing vector and matrix

Scalar 
derivatives:



Comparing vector and matrix

Scalar 
derivatives:

Matrix 
derivatives:



Comparing vector and matrix

Scalar 
derivatives:

Matrix 
derivatives:



Gradients
● Backpropagation intuition
● Toy model
● Matrix calculus
● Backpropagation matrix forward pass
● Backpropagation matrix backward pass



The forward pass

1. Write this as a series 
of 
intermediate 
calculations
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The backward pass

1. Write this as a series 
of intermediate 
calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
intermediate quantities



Gradients
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● Toy model
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The backward pass

1. Write this as a series 
of 
intermediate 
calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
intermediate quantities



Yikes!
● But:

● Quite similar to:



The backward pass

1. Write this as a series 
of intermediate 
calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
intermediate quantities



The backward pass

1. Write this as a series 
of intermediate 
calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
intermediate quantities



Derivative of ReLU



Derivative of ReLU

“Indicator function”



Derivative of RELU

1. Consider:
where:

2. We could equivalently write: 3. Taking the derivative

4. We can equivalently pointwise multiply by 
diagonal



The backward pass

1. Write this as a series 
of 
intermediate 
calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
intermediate quantities



The backward pass

1. Write this as a series 
of 
intermediate 
calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
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4. Take derivatives w.r.t.
parameters



The backward pass

1. Write this as a series 
of 
intermediate 
calculations

2. Compute these 
intermediate quantities

3. Take derivatives of 
output with respect to 
intermediate quantities

4. Take derivatives w.r.t.
parameters



Gradients
● Backpropagation intuition
● Toy model
● Jupyter notebook example of backprop and autograd
● Matrix calculus
● Backpropagation matrix forward pass
● Backpropagation matrix backward pass
● Matrix backprop summary



Pros and cons
● Extremely efficient

○ Only need matrix multiplication and thresholding for ReLU functions
● Memory hungry – must store all the intermediate quantities
● Sequential

○ can process multiple batches in parallel
○ but things get harder if the whole model doesn’t fit on one machine.



Coming Up Next

● Gradients and initialization
○ Backpropagation process - efficient calculation of gradients
○ Learning rates - how aggressively do we use gradients
○ Initialization strategies - avoid bad initializations crippling learning

● Measuring Performance
○ Sounds easy - just plot losses?
○ Some subtleties to avoid overfitting
○ Some well-documented patterns where you think you are done prematurely

● Regularization
○ Tactics to reduce the generalization gap between training and test performance.
○ Often ad-hoc or heuristics to start, but slowly grounding these with theory.

● Following material will be more specific to application areas…



Feedback?


